Testing mutual independence in high dimension via distance covariance
نویسندگان
چکیده
منابع مشابه
Nonparametric independence testing via mutual information
We propose a test of independence of two multivariate random vectors, given a sample from the underlying population. Our approach, which we call MINT, is based on the estimation of mutual information, whose decomposition into joint and marginal entropies facilitates the use of recently-developed efficient entropy estimators derived from nearest neighbour distances. The proposed critical values,...
متن کاملThe distance correlation t-test of independence in high dimension
AMS subject classifications: primary 62G10 secondary 62H20 Keywords: dCor dCov Multivariate independence Distance covariance Distance correlation High dimension a b s t r a c t Distance correlation is extended to the problem of testing the independence of random vectors in high dimension. Distance correlation characterizes independence and determines a test of multivariate independence for rand...
متن کاملTesting Some Covariance Structures under a Growth Curve Model in High Dimension
In this paper we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a Growth Curve model. The maximum likelihood estimator (MLE) for the mean in a Growth Curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N . The MLE for the covariance matrix is bas...
متن کاملA note on testing the covariance matrix for large dimension
We consider the problem of testing hypotheses regarding the covariance matrix of multivariate normal data, if the sample size s and dimension n satisfy lim n,s→∞ = y. Recently, several tests have been proposed in the case, where the sample size and dimension are of the same order, that is y ∈ (0,∞). In this paper we consider the cases y = 0 and y = ∞. It is demonstrated that standard techniques...
متن کاملTesting Conditional Independence via Empirical Likelihood
We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother functions. We show that the test statistics are asymptotically normal under the null hypothesis an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2017
ISSN: 1369-7412,1467-9868
DOI: 10.1111/rssb.12259